Sequential cocatalyst decoration on BaTaO2N towards highly-active Z-scheme water splitting
نویسندگان
چکیده
منابع مشابه
Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting.
Highly active catalysts for the oxygen evolution reaction (OER) are required for the development of photoelectrochemical devices that generate hydrogen efficiently from water using solar energy. Here, we identify the origin of a 500-fold OER activity enhancement that can be achieved with mixed (Ni,Fe)oxyhydroxides (Ni(1-x)Fe(x)OOH) over their pure Ni and Fe parent compounds, resulting in one of...
متن کاملA splitting scheme for highly dissipative Smoothed Dissipative Particle Dynamics
Smoothed Dissipative Particle Dynamics (SDPD) is a novel coarse-grained mesoscopic method for the simulation of complex fluids representing the effect of microscopic scales by a stochastic process. It has some advantages over more traditional particle-based methods but, on the other hand, shares some problems common to particle-based simulations of microfluidic systems. In particular a prohibit...
متن کاملAchievement of visible-light-driven Z-scheme overall water splitting using barium-modified Ta3N5 as a H2-evolving photocatalyst.
Ta3N5 is one of the most promising photocatalyst candidates for solar water splitting, but it still remains challenging to achieve overall water splitting via Ta3N5-based photocatalysts regardless of whether it uses a one step or two step method. Here we will address the relatively poor photocatalytic proton reduction of Ta3N5 with an effort for the promotion of charge separation via barium mod...
متن کاملNoble-Metal-Free Janus-like Structures by Cation Exchange for Z-Scheme Photocatalytic Water Splitting under Broadband Light Irradiation.
Z-scheme water splitting is a promising approach based on high-performance photocatalysis by harvesting broadband solar energy. Its efficiency depends on the well-defined interfaces between two semiconductors for the charge kinetics and their exposed surfaces for chemical reactions. Herein, we report a facile cation-exchange approach to obtain compounds with both properties without the need for...
متن کاملUnbiased photoelectrochemical water splitting in Z-scheme device using W/Mo-doped BiVO4 and Zn(x)Cd(1-x)Se.
Photoelectrochemical water splitting to generate H2 and O2 using only photon energy (with no added electrical energy) has been demonstrated with dual n-type-semiconductor (or Z-scheme) systems. Here we investigated two different Z-scheme systems; one is comprised of two cells with the same metal-oxide semiconductor (W- and Mo-doped bismuth vanadate), that is, Pt-W/Mo-BiVO4, and the other is com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2021
ISSN: 2041-1723
DOI: 10.1038/s41467-021-21284-3